Splines, lattice points, and (arithmetic) matroids

Matthias Lenz

Merton College (University of Oxford)

FPSAC 2014 — 3 July 2014

Outline

Examples

Definitions and results

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins?

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins?

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins?

Answer

In two different ways:

$$10 = 2 \cdot 3 + 2 \cdot 2 = 5 \cdot 2$$

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins?

Answer

In two different ways:

$$10 = 2 \cdot 3 + 2 \cdot 2 = 5 \cdot 2$$

James Joseph Sylvester (1814–1897)

Ferdinand Georg Frobenius (1849-1917)

 $Image\ source:\ Wikipedia/Oberwolfach\ Photo\ Collection$

A formula

• We are interested in finding non-negative integers a, b s. t. 2a + 3b = n.

$$i_{(2,3)}(n) = \#\{(a,b) : 2a + 3b = n\}$$

$$= \begin{cases} \frac{n}{6} + 1 & n \equiv 0 \mod 6 \\ \frac{n-1}{6} & n \equiv 1 \mod 6 \\ \frac{n-2}{6} + 1 & n \equiv 2 \mod 6 \\ \frac{n-3}{6} + 1 & n \equiv 3 \mod 6 \\ \frac{n-4}{6} + 1 & n \equiv 4 \mod 6 \\ \frac{n-5}{6} + 1 & n \equiv 5 \mod 6 \end{cases}$$

A formula

• We are interested in finding non-negative integers a, b s. t. 2a + 3b = n.

$$i_{(2,3)}(n) = \#\{(a,b) : 2a + 3b = n\}$$

$$= \begin{cases} \frac{n}{6} + 1 & n \equiv 0 \mod 6 \\ \frac{n-1}{6} & n \equiv 1 \mod 6 \\ \frac{n-2}{6} + 1 & n \equiv 2 \mod 6 \\ \frac{n-3}{6} + 1 & n \equiv 3 \mod 6 \\ \frac{n-4}{6} + 1 & n \equiv 4 \mod 6 \\ \frac{n-5}{6} + 1 & n \equiv 5 \mod 6 \end{cases}$$

A formula

• We are interested in finding non-negative integers a, b s. t. 2a + 3b = n.

$$i_{(2,3)}(n) = \#\{(a,b) : 2a + 3b = n\}$$

$$= \begin{cases} \frac{n}{6} + 1 & n \equiv 0 \mod 6 \\ \frac{n-1}{6} & n \equiv 1 \mod 6 \\ \frac{n-2}{6} + 1 & n \equiv 2 \mod 6 \\ \frac{n-3}{6} + 1 & n \equiv 3 \mod 6 \\ \frac{n-4}{6} + 1 & n \equiv 4 \mod 6 \\ \frac{n-5}{6} + 1 & n \equiv 5 \mod 6 \end{cases}$$

$$= \frac{n}{6} + \frac{5}{12} + (-1)^n \frac{1}{4} + \xi_3^n \frac{1}{6} (1 + \frac{1}{\sqrt{3}}i) + \xi_3^{2n} \frac{1}{6} (1 - \frac{1}{\sqrt{3}}i)$$

where $\xi_3 := e^{2\pi i/3} = \frac{1}{2}(-1 + \sqrt{3}i)$ (root of unity).

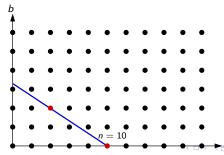
Geometry of the coin exchange problem

- We are interested in finding non-negative integers a, b s. t. 2a + 3b = n.
- This corresponds to integer points in the polytope $\Pi_{(2,3)} = \{(a,b) \in \mathbb{R}^2_{\geq 0} : 2a + 3b = n\}.$
- For n = 10, (2, 2) and (5, 0) are solutions.

Geometry of the coin exchange problem

- We are interested in finding non-negative integers a, b s. t. 2a + 3b = n.
- This corresponds to integer points in the polytope $\Pi_{(2,3)} = \{(a,b) \in \mathbb{R}^2_{>0} : 2a + 3b = n\}.$
- For n = 10, (2, 2) and (5, 0) are solutions.

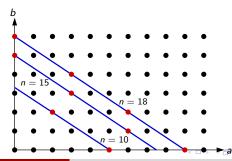
Points with integral coordinates correspond to solutions:

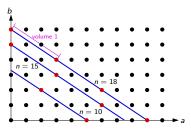


Geometry of the coin exchange problem

- We are interested in finding non-negative integers a, b s. t. 2a + 3b = n.
- This corresponds to integer points in the polytope $\Pi_{(2,3)} = \{(a,b) \in \mathbb{R}^2_{\geq 0} : 2a + 3b = n\}.$
- For n = 10, (2,2) and (5,0) are solutions.

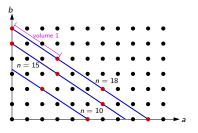
Points with integral coordinates correspond to solutions:





- normalised volume: $T_{(2,3)}(n) := \text{vol}_1(\Pi_{(2,3)}(n)) = \frac{n}{6}$.
- $i_{(2,3)}(n) = \frac{n}{6} + \frac{5}{12} + (-1)^n \frac{1}{4} + \xi_3^n (1 + \frac{1}{\sqrt{3}}i) + \xi_3^{2n} (1 \frac{1}{\sqrt{3}}i)$

- $T_{(2,3)}(n) \approx i_{(2,3)}(n)$
- $i_{(2,3)}$ can be obtained by applying the following differential operator to $T_{(2,3)}(n)$: Todd $(2,3)(\frac{\partial}{\partial x}) = 1 + \frac{5}{2} \frac{\partial}{\partial x} + \xi_n^n \frac{\partial}$

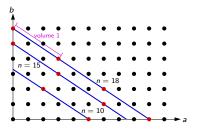


Question

What is the relationship between $T_{(2,3)}(n)$ and $i_{(2,3)}(n)$?

- normalised volume: $T_{(2,3)}(n) := \text{vol}_1(\Pi_{(2,3)}(n)) = \frac{n}{6}$.
- $i_{(2,3)}(n) = \frac{n}{6} + \frac{5}{12} + (-1)^n \frac{1}{4} + \xi_3^n (1 + \frac{1}{\sqrt{3}}i) + \xi_3^{2n} (1 \frac{1}{\sqrt{3}}i)$

- $T_{(2,3)}(n) \approx i_{(2,3)}(n)$
- $i_{(2,3)}$ can be obtained by applying the following differential operator to $T_{(2,3)}(n)$: Todd $(2,3)(\frac{\partial}{\partial n}) = 1 + \frac{5}{2} \frac{\partial}{\partial n} + \xi_3^n \frac{3}{2} \frac{\partial}{\partial n} + \xi_3^n \frac{2}{1-\xi_3} \frac{\partial}{\partial n} + \xi_3^n \frac{$

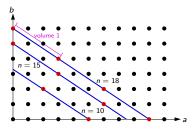


Question

What is the relationship between $T_{(2,3)}(n)$ and $i_{(2,3)}(n)$?

- normalised volume: $T_{(2,3)}(n) := \text{vol}_1(\Pi_{(2,3)}(n)) = \frac{n}{6}$.
- $i_{(2,3)}(n) = \frac{n}{6} + \frac{5}{12} + (-1)^n \frac{1}{4} + \xi_3^n (1 + \frac{1}{\sqrt{3}}i) + \xi_3^{2n} (1 \frac{1}{\sqrt{3}}i)$

- $T_{(2,3)}(n) \approx i_{(2,3)}(n)$
- $i_{(2,3)}$ can be obtained by applying the following differential operator to $T_{(2,3)}(n)$: Todd $(2,3)(\frac{\partial}{\partial n}) = 1 + \frac{5}{2} \frac{\partial}{\partial n} + \xi_2^n \frac{3}{2} \frac{\partial}{\partial n} + \xi_3^n \frac{2}{1-\xi_3^2} \frac{\partial}{\partial n} + \xi_3^{2n} \frac{2}{1-\xi_3^2} \frac{\partial}{\partial n}$



Question

What is the relationship between $T_{(2,3)}(n)$ and $i_{(2,3)}(n)$?

- normalised volume: $T_{(2,3)}(n) := \text{vol}_1(\Pi_{(2,3)}(n)) = \frac{n}{6}$.
- $i_{(2,3)}(n) = \frac{n}{6} + \frac{5}{12} + (-1)^n \frac{1}{4} + \xi_3^n (1 + \frac{1}{\sqrt{3}}i) + \xi_3^{2n} (1 \frac{1}{\sqrt{3}}i)$

- $T_{(2,3)}(n) \approx i_{(2,3)}(n)$
- $i_{(2,3)}$ can be obtained by applying the following differential operator to $T_{(2,3)}(n)$: Todd $(2,3)(\frac{\partial}{\partial n}) = 1 + \frac{5}{2} \frac{\partial}{\partial n} + \xi_2^n \frac{3}{2} \frac{\partial}{\partial n} + \xi_3^n \frac{2}{1-\xi_3} \frac{\partial}{\partial n} + \xi_3^{2n} \frac{2}{1-\xi_3^2} \frac{\partial}{\partial n}$

Question

Let $(u, v) \in \mathbb{Z}^2$. In how many different ways can we write (u, v) as a sum of (1, 0), (0, 1), (1, 1)?

Remark

We are interested in the integer points in the polytope

$$\Pi_X(u,v) = \{(a,b,c) \in \mathbb{R}^3_{\geq 0} : a \cdot (1,0) + b \cdot (0,1) + c \cdot (1,1) = (u,v)\}.$$

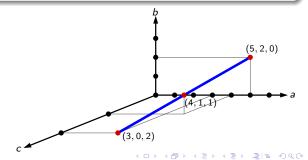
Question

Let $(u, v) \in \mathbb{Z}^2$. In how many different ways can we write (u, v) as a sum of (1, 0), (0, 1), (1, 1)?

Remark

We are interested in the integer points in the polytope

$$\Pi_X(u,v) = \{(a,b,c) \in \mathbb{R}^3_{\geq 0} : a \cdot (1,0) + b \cdot (0,1) + c \cdot (1,1) = (u,v)\}.$$

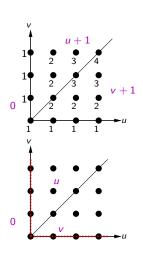


- We are interested in the integer points in the polytope $\Pi_X(u,v) = \{(a,b,c) \in \mathbb{R}^3_{\geq 0} : a \cdot (1,0) + b \cdot (0,1) + c \cdot (1,1) = (u,v)\}.$
- $i_X: \mathbb{Z}^2 \to \mathbb{N}_0$ assigns to (u, v) the number of integer points in the polytope $\Pi_X(u, v)$
- $T_X: \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ assigns to (u, v) the normalised volume of the polytope $\Pi_X(u, v)$

•
$$i_X(u,v) = \begin{cases} \min(u+1,v+1) & u,v \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

•
$$T_X(u, v) = \begin{cases} \min(u, v) & u, v \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

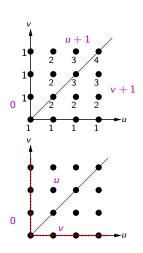
- Todd $(X)(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}) = 1 + \frac{\partial}{\partial u} + \frac{\partial}{\partial v}$ transforms T_X into i_X .
- Todd $(X)(\frac{\partial}{\partial u}, \frac{\partial}{\partial v})T_X$ is not always well-defined.
- $i_X(u-1, v-1) = T_X(u, v)$ (everywhere on \mathbb{Z}^2)



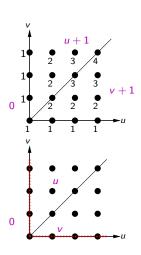
•
$$i_X(u,v) = \begin{cases} \min(u+1,v+1) & u,v \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

•
$$T_X(u, v) = \begin{cases} \min(u, v) & u, v \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

- Todd $(X)(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}) = 1 + \frac{\partial}{\partial u} + \frac{\partial}{\partial v}$ transforms T_X into i_X .
- Todd $(X)(\frac{\partial}{\partial u}, \frac{\partial}{\partial v})T_X$ is not always well-defined.
- $i_X(u-1, v-1) = T_X(u, v)$ (everywhere on \mathbb{Z}^2)



- $i_X(u,v) = \begin{cases} \min(u+1,v+1) & u,v \geq 0 \\ 0 & \text{otherwise} \end{cases}$
- $T_X(u,v) = \begin{cases} \min(u,v) & u,v \geq 0 \\ 0 & \text{otherwise} \end{cases}$
- Todd $(X)(\frac{\partial}{\partial u}, \frac{\partial}{\partial v}) = 1 + \frac{\partial}{\partial u} + \frac{\partial}{\partial v}$ transforms T_X into i_X .
- Todd $(X)(\frac{\partial}{\partial u}, \frac{\partial}{\partial v})T_X$ is not always well-defined.
- $i_X(u-1, v-1) = T_X(u, v)$ (everywhere on \mathbb{Z}^2)



Examples

2 Definitions and results

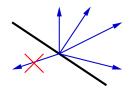
Setup

- $X = (x_1, ..., x_N) \subseteq \mathbb{Z}^d$, list of vectors / $(d \times N)$ -matrix
- d < N, full rank
- $0 \notin \operatorname{conv}(x_1, \ldots, x_N)$.
- Sometimes we assume: X unimodular, i. e. every non-singular $(d \times d)$ submatrix has determinant $\pm 1 \Leftrightarrow$ every \mathbb{R}^d basis selected from X is a lattice basis for \mathbb{Z}^d .

Example

•
$$X = (2,3)$$

$$\bullet \ X = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$



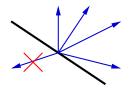
Setup

- $X = (x_1, ..., x_N) \subseteq \mathbb{Z}^d$, list of vectors $/ (d \times N)$ -matrix
- $d \leq N$, full rank
- $0 \notin \operatorname{conv}(x_1, \dots, x_N)$.
- Sometimes we assume: X unimodular, i. e. every non-singular $(d \times d)$ submatrix has determinant $\pm 1 \Leftrightarrow \text{every } \mathbb{R}^d$ basis selected from X is a lattice basis for \mathbb{Z}^d .

Example

•
$$X = (2,3)$$

$$\bullet \ X = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

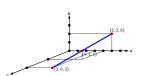


Variable polytopes

Definition (Variable polytopes)

Let $u \in \mathbb{R}^d$.

$$\Pi_X(u) := \{ \alpha \in \mathbb{R}^N_{\geq 0} : X\alpha = u \}$$



Definition

We define the multivariate spline $T_X : \mathbb{R}^d \to \mathbb{R}$ and the vector partition function $i_X : \mathbb{Z}^d \to \mathbb{N}_0$ by

$$T_X(u) := \frac{1}{\sqrt{\det(XX^T)}} \operatorname{vol}_{N-d}(\Pi_X(u))$$

$$\exists i_X(u) := \left| \Pi_X(u) \cap \mathbb{Z}^d \right|.$$

Remark

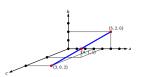
• i_X generalizes the Ehrhart polynomial.

Variable polytopes

Definition (Variable polytopes)

Let $u \in \mathbb{R}^d$.

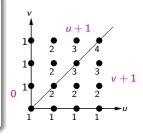
$$\Pi_X(u) := \{ \alpha \in \mathbb{R}^N_{\geq 0} : X\alpha = u \}$$



Definition

We define the multivariate spline $T_X : \mathbb{R}^d \to \mathbb{R}$ and the vector partition function $i_X : \mathbb{Z}^d \to \mathbb{N}_0$ by

$$T_X(u) := rac{1}{\sqrt{\det(XX^T)}} \operatorname{vol}_{N-d}(\Pi_X(u))$$
 and $i_X(u) := \left|\Pi_X(u) \cap \mathbb{Z}^d\right|$.



Remark

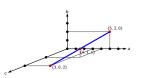
 \bullet i_X generalizes the Ehrhart polynomial.

Variable polytopes

Definition (Variable polytopes)

Let $u \in \mathbb{R}^d$.

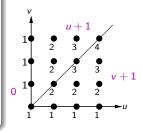
$$\Pi_X(u) := \{ \alpha \in \mathbb{R}^N_{\geq 0} : X\alpha = u \}$$



Definition

We define the multivariate spline $T_X : \mathbb{R}^d \to \mathbb{R}$ and the vector partition function $i_X : \mathbb{Z}^d \to \mathbb{N}_0$ by

$$T_X(u) := rac{1}{\sqrt{\det(XX^T)}} \operatorname{vol}_{N-d}(\Pi_X(u))$$
 and $i_X(u) := \left|\Pi_X(u) \cap \mathbb{Z}^d
ight|.$



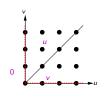
Remark

• i_X generalizes the Ehrhart polynomial.

Properties

Remark

- supp $(T_X) = \left\{ \sum_{i=1}^N \lambda_i x_i : \lambda_i \ge 0 \right\} =: cone(X)$
- ② T_X is piecewise polynomial of degree N-d.
- 3 Regions of polynomiality are cones
- i_X is piecewise polynomial if X is unimodular



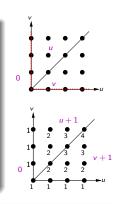
Notation

- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For example, $x = (1, 2) \leadsto p_x = s_1 + 2s_2$.

Properties

Remark

- 2 T_X is piecewise polynomial of degree N-d.
- Regions of polynomiality are cones
- i_X is piecewise quasipolynomial (quasipolynomial: agrees with a polynomial on each coset of some sublattice $\Gamma \subseteq \mathbb{Z}^d$)
- \bullet i_X is piecewise polynomial if X is unimodular



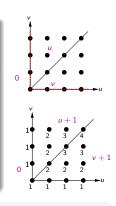
Notation

- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For example, $x = (1, 2) \rightsquigarrow p_x = s_1 + 2s_2$.

Properties

Remark

- supp $(T_X) = \left\{ \sum_{i=1}^N \lambda_i x_i : \lambda_i \ge 0 \right\} =: \mathsf{cone}(X)$
- 2 T_X is piecewise polynomial of degree N-d.
- Regions of polynomiality are cones
- i_X is piecewise quasipolynomial (quasipolynomial: agrees with a polynomial on each coset of some sublattice $\Gamma \subseteq \mathbb{Z}^d$)
- \bullet ix is piecewise polynomial if X is unimodular



Notation

- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For example, $x = (1, 2) \rightsquigarrow p_x = s_1 + 2s_2$.

Khovanskii-Pukhlikov formula

Definition

Todd operator: Todd $(X) := \prod_{x \in X} \frac{p_x}{1 - e^{-p_x}} \in \mathbb{R}[[s_1, \dots, s_d]]$

Remark

- $\frac{p_x}{1-e^{-p_x}} = \sum_{k>0} \frac{B_k}{k!} (p_x)^k$
- B_i denote the Bernoulli numbers $B_0=1$, $B_1=\frac{1}{2}$, $B_2=\frac{1}{6}$,...

Notation

•
$$p \in \mathbb{R}[[s_1, \ldots, s_d]] \rightsquigarrow p(D) := p(\frac{\partial}{\partial s_1}, \ldots, \frac{\partial}{\partial s_d})$$

Theorem (Khovanskii-Pukhlikov, 1992)

- Suppose X unimodular.
- Let $u \in \mathbb{Z}^d$ and let p_{Ω} be the local piece of T_X in neighbourhood of u.

Then
$$i_X(u) = \text{Todd}(X)(D) p_{\Omega}(u)$$
.

Khovanskii-Pukhlikov formula

Definition

Todd operator: Todd $(X) := \prod_{x \in X} \frac{p_x}{1 - e^{-p_x}} \in \mathbb{R}[[s_1, \dots, s_d]]$

Remark

- $\bullet \ \frac{p_x}{1-e^{-p_x}} = \sum_{k>0} \frac{B_k}{k!} (p_x)^k$
- B_i denote the Bernoulli numbers $B_0=1$, $B_1=\frac{1}{2}$, $B_2=\frac{1}{6}$,...

Notation

• $p \in \mathbb{R}[[s_1, \ldots, s_d]] \rightsquigarrow p(D) := p(\frac{\partial}{\partial s_1}, \ldots, \frac{\partial}{\partial s_d})$

Theorem (Khovanskii-Pukhlikov, 1992)

- Suppose X unimodular.
- Let $u \in \mathbb{Z}^d$ and let p_{Ω} be the local piece of T_X in neighbourhood of u.

Then $i_X(u) = \text{Todd}(X)(D) p_{\Omega}(u)$.

Khovanskii-Pukhlikov formula

Definition

Todd operator: Todd $(X) := \prod_{x \in X} \frac{p_x}{1 - e^{-p_x}} \in \mathbb{R}[[s_1, \dots, s_d]]$

Remark

- $\bullet \ \tfrac{p_x}{1-e^{-p_x}} = \textstyle \sum_{k\geq 0} \tfrac{B_k}{k!} (p_x)^k$
- B_i denote the Bernoulli numbers $B_0=1$, $B_1=\frac{1}{2}$, $B_2=\frac{1}{6}$,...

Notation

• $p \in \mathbb{R}[[s_1,\ldots,s_d]] \rightsquigarrow p(D) := p(\frac{\partial}{\partial s_1},\ldots,\frac{\partial}{\partial s_d})$

Theorem (Khovanskii-Pukhlikov, 1992)

- Suppose X unimodular.
- Let $u \in \mathbb{Z}^d$ and let p_{Ω} be the local piece of T_X in neighbourhood of u.

Then $i_X(u) = \operatorname{Todd}(X)(D) p_{\Omega}(u)$.

Zonotopes

- T_X has degree N-d, so Todd(X) is "too long".
- ullet A differential operator of degree at most N d should be sufficient.

Zonotopes

Remark

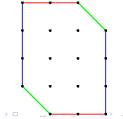
- T_X has degree N-d, so Todd(X) is "too long".
- ullet A differential operator of degree at most N-d should be sufficient.

Definition

- zonotope: $Z(X) := \{ \sum_{i=1}^{N} \lambda_i x_i : 0 \le \lambda_i \le 1 \} = X \cdot [0, 1]^N$
- $\mathcal{Z}_{-}(X) := \text{set of interior lattice points in zonotope } Z(X)$

Example

$$\bullet \ X = \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$



- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For a sublist $Y \subseteq X$, we define $p_Y := \prod_{x \in Y} p_x$.
- For example, if Y = ((1,0), (1,2)), then $p_Y = s_1(s_1 + 2s_2)$.

Definition (Akopyan-Saakyan, 1988, Dyn-Ron, 1990)

central \mathcal{P} -space: $\mathcal{P}(X) := \operatorname{span}\{p_Y : Y \subseteq X, \operatorname{rank}(X \setminus Y) = \operatorname{rank}(X)\}$

Example

- X = (1, 1, 1)
- $\mathcal{P}(X) = \operatorname{span}\{1, s, s^2\}$

- There is a projection $\psi : \mathbb{R}[[s_1, \dots, s_d]] \to \mathcal{P}(X)$ s. t. $\mathsf{Todd}(X)(D) T_X = \psi_X(\mathsf{Todd}(X))(D) T_X$
- In the example: forget all monomials of degree at least 3.

- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For a sublist $Y \subseteq X$, we define $p_Y := \prod_{x \in Y} p_x$.
- For example, if Y = ((1,0),(1,2)), then $p_Y = s_1(s_1 + 2s_2)$.

Definition (Akopyan-Saakyan, 1988, Dyn-Ron, 1990)

central
$$\mathcal{P}$$
-space: $\mathcal{P}(X) := \operatorname{span}\{p_Y : Y \subseteq X, \operatorname{rank}(X \setminus Y) = \operatorname{rank}(X)\}$

Example

- X = (1, 1, 1)
- $\mathcal{P}(X) = \operatorname{span}\{1, s, s^2\}$

- There is a projection $\psi : \mathbb{R}[[s_1, \dots, s_d]] \to \mathcal{P}(X)$ s. t. $\mathsf{Todd}(X)(D) T_X = \psi_X(\mathsf{Todd}(X))(D) T_X$
- In the example: forget all monomials of degree at least 3.

- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For a sublist $Y \subseteq X$, we define $p_Y := \prod_{x \in Y} p_x$.
- For example, if Y = ((1,0),(1,2)), then $p_Y = s_1(s_1 + 2s_2)$.

Definition (Akopyan-Saakyan, 1988, Dyn-Ron, 1990)

central \mathcal{P} -space: $\mathcal{P}(X) := \text{span}\{p_Y : Y \subseteq X, \, \text{rank}(X \setminus Y) = \text{rank}(X)\}$

Example

- X = (1, 1, 1)
- $P(X) = \operatorname{span}\{1, s, s^2\}$

- There is a projection $\psi : \mathbb{R}[[s_1, \dots, s_d]] \to \mathcal{P}(X)$ s. t. $\mathsf{Todd}(X)(D) T_X = \psi_X(\mathsf{Todd}(X))(D) T_X$
- In the example: forget all monomials of degree at least 3.

- $x = (v_1, \ldots, v_d) \in \mathbb{R}^d \rightsquigarrow p_x := v_1 s_1 + \ldots + v_d s_d \in \mathbb{R}[s_1, \ldots, s_d]$
- For a sublist $Y \subseteq X$, we define $p_Y := \prod_{x \in Y} p_x$.
- For example, if Y = ((1,0),(1,2)), then $p_Y = s_1(s_1 + 2s_2)$.

Definition (Akopyan-Saakyan, 1988, Dyn-Ron, 1990)

central \mathcal{P} -space: $\mathcal{P}(X) := \text{span}\{p_Y : Y \subseteq X, \, \text{rank}(X \setminus Y) = \text{rank}(X)\}$

Example

- X = (1, 1, 1)
- $P(X) = \operatorname{span}\{1, s, s^2\}$

- There is a projection $\psi : \mathbb{R}[[s_1, \dots, s_d]] \to \mathcal{P}(X)$ s. t. $\mathsf{Todd}(X)(D) T_X = \psi_X(\mathsf{Todd}(X))(D) T_X$
- In the example: forget all monomials of degree at least 3.

Internal \mathcal{P} -space

Remark

 $Todd(X)(D)T_X$ is not everywere well defined.

Definition (Holtz-Ron, 2011, (Ardila-Postnikov, 2010))

internal
$$\mathcal{P}$$
-space $\mathcal{P}_{-}(X) := \bigcap_{x \in X} \mathcal{P}(X \setminus x)$

Example

- X = (1, 1, 1)
- $\mathcal{P}(X) = \operatorname{span}\{1, s, s^2\}$ and $\mathcal{P}_{-}(X) = \operatorname{span}\{1, s\}$

Theorem (ML)

Let $p \in \mathcal{P}(X)$. Then $p \in \mathcal{P}_{-}(X) \Leftrightarrow p(D)T_X$ is continuous.

Internal \mathcal{P} -space

Remark

 $Todd(X)(D)T_X$ is not everywere well defined.

Definition (Holtz-Ron, 2011, (Ardila-Postnikov, 2010))

internal
$$\mathcal{P}$$
-space $\mathcal{P}_{-}(X) := \bigcap_{x \in X} \mathcal{P}(X \setminus x)$

Example

- X = (1, 1, 1)
- $\mathcal{P}(X) = \operatorname{span}\{1, s, s^2\}$ and $\mathcal{P}_{-}(X) = \operatorname{span}\{1, s\}$

Theorem (ML)

Let $p \in \mathcal{P}(X)$. Then $p \in \mathcal{P}_{-}(X) \Leftrightarrow p(D)T_X$ is continuous.

Variant of Khovanskii-Pukhlikov

Definition

Let $z \in \mathbb{R}^d$. Then define

$$f_z := \psi_X(e^{-p_z}\operatorname{\mathsf{Todd}}(X))$$

Theorem (ML)

Suppose X unimodular. Let $z \in \mathcal{Z}_{-}(X)$. Then $f_z \in \mathcal{P}_{-}(X)$.

Theorem (ML, Variant of Khovanskii-Pukhlikov)

Suppose X unimodular. Let $u \in \mathbb{Z}^d$ and $z \in \mathcal{Z}_{-}(X)$. Then

$$f_z(D)T_X(u)=i_X(u-z).$$

Theorem (ML)

Suppose X unimodular. Then $\{f_z : z \in \mathcal{Z}_{-}(X)\}$ is a basis for $\mathcal{P}_{-}(X)$.

Variant of Khovanskii-Pukhlikov

Definition

Let $z \in \mathbb{R}^d$. Then define

$$f_z := \psi_X(e^{-p_z}\operatorname{\mathsf{Todd}}(X))$$

Theorem (ML)

Suppose X unimodular. Let $z \in \mathcal{Z}_{-}(X)$. Then $f_z \in \mathcal{P}_{-}(X)$.

Theorem (ML, Variant of Khovanskii-Pukhlikov)

Suppose X unimodular. Let $u \in \mathbb{Z}^d$ and $z \in \mathcal{Z}_{-}(X)$. Then

$$f_z(D)T_X(u)=i_X(u-z).$$

Theorem (ML)

Suppose X unimodular. Then $\{f_z : z \in \mathcal{Z}_{-}(X)\}$ is a basis for $\mathcal{P}_{-}(X)$.

Variant of Khovanskii-Pukhlikov

Definition

Let $z \in \mathbb{R}^d$. Then define

$$f_z := \psi_X(e^{-p_z} \operatorname{\mathsf{Todd}}(X))$$

Theorem (ML)

Suppose X unimodular. Let $z \in \mathcal{Z}_{-}(X)$. Then $f_z \in \mathcal{P}_{-}(X)$.

Theorem (ML, Variant of Khovanskii-Pukhlikov)

Suppose X unimodular. Let $u \in \mathbb{Z}^d$ and $z \in \mathcal{Z}_{-}(X)$. Then

$$f_z(D)T_X(u)=i_X(u-z).$$

Theorem (ML)

Suppose X unimodular. Then $\{f_z : z \in \mathcal{Z}_-(X)\}$ is a basis for $\mathcal{P}_-(X)$.

Matroids and Hilbert series

- Hilbert series: $V = \bigoplus V_i$ graded vector space $\rightsquigarrow \text{Hilb}(V, q) = \sum_i \dim V_i q^i$.
- Representation of a Matroid: a tuple (X, Δ) with X a list of vectors and $\Delta \subseteq 2^X$ linearly independent sublists
- Tutte polynomial: $\mathfrak{T}_X(\alpha,\beta) := \sum_{A \subset X} (\alpha-1)^{r-\operatorname{rank}(A)} (\beta-1)^{|A|-\operatorname{rank}(A)}$

Theorem (Ardila-Postnikov (2009), Holtz-Ron (2011))

- $Hilb(\mathcal{P}_{-}(X), q) = q^{N-d} \mathfrak{T}_{X}(0, q^{-1})$
- $Hilb(\mathcal{P}(X), q) = q^{N-d} \mathfrak{T}_X(1, q^{-1})$
- If X is unimodular then dim $\mathcal{P}(X) = \operatorname{vol}(Z(X))$ and dim $\widetilde{\mathcal{P}}_{-}(X) = no.$ of interior lattice points of Z(X)

Matroids and Hilbert series

- Hilbert series: $V = \bigoplus V_i$ graded vector space $\rightsquigarrow \text{Hilb}(V, q) = \sum_i \dim V_i q^i$.
- Representation of a Matroid: a tuple (X, Δ) with X a list of vectors and $\Delta \subseteq 2^X$ linearly independent sublists
- Tutte polynomial: $\mathfrak{T}_X(\alpha,\beta) := \sum_{A \subset X} (\alpha-1)^{r-\operatorname{rank}(A)} (\beta-1)^{|A|-\operatorname{rank}(A)}$

Theorem (Ardila-Postnikov (2009), Holtz-Ron (2011))

- $\mathsf{Hilb}(\mathcal{P}_{-}(X),q)=q^{N-d}\mathfrak{T}_X(0,q^{-1})$
- $\mathsf{Hilb}(\mathcal{P}(X),q) = q^{N-d}\mathfrak{T}_X(1,q^{-1})$
- If X is unimodular then $\dim \widetilde{\mathcal{P}}(X) = \operatorname{vol}(Z(X))$ and $\dim \widetilde{\mathcal{P}}_{-}(X) = no.$ of interior lattice points of Z(X)

What can we do if X is not unimodular?

Toric arrangements

Definition

 $x \in \mathbb{R}^d$ defines the following:

- in \mathbb{R}^d the hyperplane $H_x = \{ v \in \mathbb{R}^d : v \cdot x = 0 \}$
- in $(\mathbb{R}/\mathbb{Z})^d$ the hypersurface $H^t_x = \{\phi \in (\mathbb{R}/\mathbb{Z})^d : \phi \cdot x = 0\}$

 $\{H_x^t : x \in X\}$ is the toric arrangement defined by X.

Example

$$\bullet \ X = \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

- V(X) = vertices of the toric arrangement
- $\phi \in \mathcal{V}(X)$ defines a map $e_{\phi} : \mathbb{R}^d \to S^1 \subseteq \mathbb{C}$ by $e_{\phi}(x) := e^{2\pi i (\phi \cdot x)}$
- ullet e_{ϕ} is a higher dimensional analogue of a root of unity.

Toric arrangements

Definition

 $x \in \mathbb{R}^d$ defines the following:

- in \mathbb{R}^d the hyperplane $H_x = \{ v \in \mathbb{R}^d : v \cdot x = 0 \}$
- in $(\mathbb{R}/\mathbb{Z})^d$ the hypersurface $H^t_x = \{\phi \in (\mathbb{R}/\mathbb{Z})^d : \phi \cdot x = 0\}$

 $\{H_x^t : x \in X\}$ is the toric arrangement defined by X.

Example

$$\bullet \ X = \left(\begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)$$

- V(X) = vertices of the toric arrangement
- $ullet \ \phi \in \mathcal{V}(X)$ defines a map $e_\phi: \mathbb{R}^d o S^1 \subseteq \mathbb{C}$ by $e_\phi(x) := e^{2\pi i (\phi \cdot x)}$
- ullet e_{ϕ} is a higher dimensional analogue of a root of unity.

Periodic Todd operator and the Brion-Vergne formula

Definition (Periodic Todd operator)

$$\mathsf{T}\widetilde{\mathsf{odd}}(X) := \sum_{\phi \in \mathcal{V}(X)} e_\phi \prod_{\mathsf{x} \in X} rac{p_\mathsf{x}}{1 - e_\phi(-p_\mathsf{x}) \mathrm{e}^{-p_\mathsf{x}}}$$

Theorem (Brion-Vergne, 1997)

Let $u \in \mathbb{Z}^d$ and let p_{Ω} be the local piece of T_X in a neighbourhood of u. Then

$$i_X(u) = \widetilde{\mathsf{Todd}}(X)p_{\Omega}(u).$$

Periodic Todd operator and the Brion-Vergne formula

Definition (Periodic Todd operator)

$$\mathsf{T}\widetilde{\mathsf{odd}}(X) := \sum_{\phi \in \mathcal{V}(X)} e_\phi \prod_{\mathsf{x} \in X} rac{p_\mathsf{x}}{1 - e_\phi(-p_\mathsf{x}) \mathrm{e}^{-p_\mathsf{x}}}$$

Theorem (Brion-Vergne, 1997)

Let $u \in \mathbb{Z}^d$ and let p_{Ω} be the local piece of T_X in a neighbourhood of u. Then

$$i_X(u) = \widetilde{\mathsf{Todd}}(X)p_{\Omega}(u).$$

Periodic \mathcal{P} -spaces

Definition (ML)

Periodic central \mathcal{P} -space:

$$\widetilde{\mathcal{P}}(X) := igoplus_{\phi \in \mathcal{V}(X)} e_\phi p_{X \setminus X_\phi} \mathcal{P}(X_\phi), \quad ext{ where } X_\phi = (x \in X : \phi \cdot x = 0)$$

Remark

• There is a projection $\tilde{\psi}: \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]] \to \widetilde{\mathcal{P}}(X)$ s. t.

$$\widetilde{\mathsf{Todd}}(X)(D) \ T_X = \widetilde{\psi}_X(\widetilde{\mathsf{Todd}}(X))(D) \ T_X$$

Definition (ML)

- $\tilde{f}_z := \widetilde{\psi}(e^{-p_z} \operatorname{Todd}(X))$
- internal periodic \mathcal{P} -space: $\widetilde{\mathcal{P}}_{-}(X) := \operatorname{span}\{\widetilde{f}_z : z \in \mathcal{Z}_{-}(X)\}$

Periodic \mathcal{P} -spaces

Definition (ML)

Periodic central \mathcal{P} -space:

$$\widetilde{\mathcal{P}}(X) := igoplus_{\phi \in \mathcal{V}(X)} e_\phi p_{X \setminus X_\phi} \mathcal{P}(X_\phi), \quad ext{ where } X_\phi = (x \in X : \phi \cdot x = 0)$$

Remark

• There is a projection $\tilde{\psi}: \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]] \to \widetilde{\mathcal{P}}(X)$ s. t.

$$\widetilde{\mathsf{Todd}}(X)(D) \ T_X = \widetilde{\psi}_X(\widetilde{\mathsf{Todd}}(X))(D) \ T_X$$

Definition (ML)

- $\tilde{f}_z := \widetilde{\psi}(e^{-p_z} \operatorname{Todd}(X))$
- internal periodic \mathcal{P} -space: $\widetilde{\mathcal{P}}_{-}(X) := \operatorname{span}\{\widetilde{f}_z : z \in \mathcal{Z}_{-}(X)\}$

Periodic \mathcal{P} -spaces

Definition (ML)

Periodic central \mathcal{P} -space:

$$\widetilde{\mathcal{P}}(X) := igoplus_{\phi \in \mathcal{V}(X)} e_\phi p_{X \setminus X_\phi} \mathcal{P}(X_\phi), \quad ext{ where } X_\phi = (x \in X : \phi \cdot x = 0)$$

Remark

• There is a projection $\tilde{\psi}: \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]] \to \widetilde{\mathcal{P}}(X)$ s. t.

$$\widetilde{\mathsf{Todd}}(X)(D) \ T_X = \widetilde{\psi}_X(\widetilde{\mathsf{Todd}}(X))(D) \ T_X$$

Definition (ML)

- $\tilde{f}_z := \widetilde{\psi}(e^{-p_z} \operatorname{Todd}(X))$
- internal periodic \mathcal{P} -space: $\widetilde{\mathcal{P}}_{-}(X) := \operatorname{span}\{\widetilde{f}_z : z \in \mathcal{Z}_{-}(X)\}$

Theorem (ML)

Let $p \in \widetilde{\mathcal{P}}(X)$. Then $p \in \widetilde{\mathcal{P}}_{-}(X) \Leftrightarrow p(D)T_X$ is continuous.

Theorem (ML, variant of Brion-Vergne)

Let $u \in \mathbb{Z}^d$ and $z \in \mathcal{Z}_{-}(X)$. Then

$$\tilde{f}_z(D)T_X(u)=i_X(u-z).$$

Question

- Khovanskii-Puklikov's and Brion-Vergne's motivation was geometry (e.g. Riemann-Roch theorem for toric varieties).
- Do these results have an interpretation in terms of (algebraic) geometry?

Theorem (ML)

Let $p \in \widetilde{\mathcal{P}}(X)$. Then $p \in \widetilde{\mathcal{P}}_{-}(X) \Leftrightarrow p(D)T_X$ is continuous.

Theorem (ML, variant of Brion-Vergne)

Let $u \in \mathbb{Z}^d$ and $z \in \mathcal{Z}_-(X)$. Then

$$\tilde{f}_z(D)T_X(u)=i_X(u-z).$$

Question

- Khovanskii-Puklikov's and Brion-Vergne's motivation was geometry (e.g. Riemann-Roch theorem for toric varieties).
- Do these results have an interpretation in terms of (algebraic) geometry?

Arithmetic matroids and Hilbert series

- Representation of an arithmetic matroid: $X \subseteq \mathbb{Z}^d$ list of vectors and $m(A) := |\operatorname{span}_{\mathbb{R}}(A) \cap \mathbb{Z}^d / \operatorname{span}_{\mathbb{Z}}(A)|$ multiplicity function
- Arithmetic Tutte polynomial: $\mathfrak{M}_X(\alpha,\beta) := \sum_{A \subset X} m(A)(\alpha-1)^{r-\operatorname{rank}(A)}(\beta-1)^{|A|-\operatorname{rank}(A)}$
- If X is unimodular, then $\mathfrak{M}_X(\alpha,\beta) = \mathfrak{T}_X(\alpha,\beta)$.

Theorem (ML)

- $Hilb(\widetilde{\mathcal{P}}_{-}(X), q) = q^{N-d}\mathfrak{M}_X(0, q^{-1})$
- $Hilb(\tilde{\mathcal{P}}(X), q) = q^{N-d}\mathfrak{M}_X(1, q^{-1})$
- $\dim \widetilde{\mathcal{P}}(X) = \operatorname{vol}(Z(X))$ and $\dim \widetilde{\mathcal{P}}_{-}(X) = no.$ of interior lattice points of Z(X)

Arithmetic matroids and Hilbert series

- Representation of an arithmetic matroid: $X \subseteq \mathbb{Z}^d$ list of vectors and $m(A) := |\operatorname{span}_{\mathbb{R}}(A) \cap \mathbb{Z}^d / \operatorname{span}_{\mathbb{Z}}(A)|$ multiplicity function
- Arithmetic Tutte polynomial: $\mathfrak{M}_X(\alpha,\beta) := \sum_{A \subset X} m(A)(\alpha-1)^{r-\operatorname{rank}(A)}(\beta-1)^{|A|-\operatorname{rank}(A)}$
- If X is unimodular, then $\mathfrak{M}_X(\alpha,\beta) = \mathfrak{T}_X(\alpha,\beta)$.

Theorem (ML)

- $Hilb(\widetilde{\mathcal{P}}_{-}(X), q) = q^{N-d}\mathfrak{M}_{X}(0, q^{-1})$
- $\mathsf{Hilb}(\widetilde{\mathcal{P}}(X),q) = q^{N-d}\mathfrak{M}_X(1,q^{-1})$
- $\dim \widetilde{\mathcal{P}}(X) = \operatorname{vol}(Z(X))$ and $\dim \widetilde{\mathcal{P}}_{-}(X) = no.$ of interior lattice points of Z(X)

End of talk

References

- Unimodular case: ML, Lattice points in polytopes, box splines, and Todd operators, IMRN, 2014
 arXiv:1305.2784, DOI: 10.1093/imrn/rnu095
- General case: ML, Splines, lattice points, and arithmetic matroids, in preparation.

Definition (Cocircuit ideal and projection)

- $\mathcal{J}(X) := \text{ideal}\{p_C : C \subseteq X \text{ and } \text{rank}(X \setminus C) < d\} \subseteq \mathbb{R}[s_1, \dots, s_d].$
- It is known that $\mathcal{P}(X) \oplus \mathcal{J}(X) = \mathbb{R}[s_1, \dots, s_d]$.
- Let $\psi_X : \mathcal{P}(X) \oplus \mathcal{J}(X) \to \mathcal{P}(X)$ denote the projection.

- Unimodular case: $\psi_X : \mathbb{R}[[s_1, \dots, s_d]] \to \mathcal{P}(X)$ projection map
- General case: $\widetilde{\psi}_X: \bigoplus_{\phi \in \mathcal{V}(X)} e_\phi \mathbb{R}[[s_1, \dots, s_d]] o \widetilde{\mathcal{P}}(X)$
- Let $f = \sum_{\phi \in \mathcal{V}(X)} e_{\phi} f_{\phi} \in \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]]$ $(f_{\phi} \in \mathbb{R}[[s_1, \dots, s_d]] \text{ for all } \phi \in \mathcal{V}(X))$
- $\widetilde{\psi}_X(f) := \sum_{\phi} e_{\phi} \psi_X(f_{\phi})$
- $\tilde{f}_z := \psi_X(e^{-p_z} \operatorname{Todd}(X))$

Definition (Cocircuit ideal and projection)

- $\mathcal{J}(X) := \text{ideal}\{p_C : C \subseteq X \text{ and } \text{rank}(X \setminus C) < d\} \subseteq \mathbb{R}[s_1, \dots, s_d].$
- It is known that $\mathcal{P}(X) \oplus \mathcal{J}(X) = \mathbb{R}[s_1, \dots, s_d]$.
- Let $\psi_X : \mathcal{P}(X) \oplus \mathcal{J}(X) \to \mathcal{P}(X)$ denote the projection.

- Unimodular case: $\psi_X : \mathbb{R}[[s_1, \dots, s_d]] \to \mathcal{P}(X)$ projection map
- General case: $\widetilde{\psi}_X: \bigoplus_{\phi \in \mathcal{V}(X)} e_\phi \mathbb{R}[[s_1, \dots, s_d]] o \widetilde{\mathcal{P}}(X)$
- Let $f = \sum_{\phi \in \mathcal{V}(X)} e_{\phi} f_{\phi} \in \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]]$ $(f_{\phi} \in \mathbb{R}[[s_1, \dots, s_d]] \text{ for all } \phi \in \mathcal{V}(X))$
- $\widetilde{\psi}_X(f) := \sum_{\phi} e_{\phi} \psi_X(f_{\phi})$
- $\tilde{f}_z := \psi_X(e^{-p_z} \operatorname{Todd}(X))$

Definition (Cocircuit ideal and projection)

- $\mathcal{J}(X) := \text{ideal}\{p_C : C \subseteq X \text{ and } \text{rank}(X \setminus C) < d\} \subseteq \mathbb{R}[s_1, \dots, s_d].$
- It is known that $\mathcal{P}(X) \oplus \mathcal{J}(X) = \mathbb{R}[s_1, \dots, s_d]$.
- Let $\psi_X : \mathcal{P}(X) \oplus \mathcal{J}(X) \to \mathcal{P}(X)$ denote the projection.

- Unimodular case: $\psi_X: \mathbb{R}[[s_1,\ldots,s_d]] o \mathcal{P}(X)$ projection map
- General case: $\widetilde{\psi}_X: \bigoplus_{\phi \in \mathcal{V}(X)} e_\phi \mathbb{R}[[s_1, \dots, s_d]] \to \widetilde{\mathcal{P}}(X)$
- Let $f = \sum_{\phi \in \mathcal{V}(X)} e_{\phi} f_{\phi} \in \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]]$ $(f_{\phi} \in \mathbb{R}[[s_1, \dots, s_d]] \text{ for all } \phi \in \mathcal{V}(X))$
- $\widetilde{\psi}_X(f) := \sum_{\phi} e_{\phi} \psi_X(f_{\phi})$
- $\tilde{f}_z := \psi_X(e^{-p_z} \operatorname{Todd}(X))$

Definition (Cocircuit ideal and projection)

- $\mathcal{J}(X) := \text{ideal}\{p_C : C \subseteq X \text{ and } \text{rank}(X \setminus C) < d\} \subseteq \mathbb{R}[s_1, \dots, s_d].$
- It is known that $\mathcal{P}(X) \oplus \mathcal{J}(X) = \mathbb{R}[s_1, \dots, s_d]$.
- Let $\psi_X : \mathcal{P}(X) \oplus \mathcal{J}(X) \to \mathcal{P}(X)$ denote the projection.

- Unimodular case: $\psi_X: \mathbb{R}[[s_1,\ldots,s_d]] o \mathcal{P}(X)$ projection map
- General case: $\widetilde{\psi}_X: \bigoplus_{\phi \in \mathcal{V}(X)} e_\phi \mathbb{R}[[s_1,\ldots,s_d]] o \widetilde{\mathcal{P}}(X)$
- Let $f = \sum_{\phi \in \mathcal{V}(X)} e_{\phi} f_{\phi} \in \bigoplus_{\phi \in \mathcal{V}(X)} e_{\phi} \mathbb{R}[[s_1, \dots, s_d]]$ $(f_{\phi} \in \mathbb{R}[[s_1, \dots, s_d]] \text{ for all } \phi \in \mathcal{V}(X))$
- $\widetilde{\psi}_X(f) := \sum_{\phi} e_{\phi} \psi_X(f_{\phi})$
- $\tilde{f}_z := \widetilde{\psi}_X(e^{-p_z} \operatorname{Todd}(X))$