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Frobenius’ coin exchange problem
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Frobenius’ coin exchange problem

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins? J
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Frobenius’ coin exchange problem

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins?

Answer

In two different ways:
10=2-3+2-2=5-2
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Frobenius’ coin exchange problem

Question

In how many ways can one pay 10 cents using 2 cent and 3 cent coins?

Answer

In two different ways:
10=2-3+2-2=5-2

Ferdinand Georg |
Frobenius
(1849-1917)

James Joseph
Sylvester
(1814-1897)

Frohin it Pl
Image source: Wikipedia/Oberwolfach Photo Collection
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A formula

@ We are interested in finding non-negative integers a, b s.t.
2a+3b=n.
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A formula

@ We are interested in finding non-negative integers a, b s.t.
2a+3b=n.

i(273)(n) = #{(a, b) :2a+3b= n}

(g—i—l n=0 mod 6
”gl n=1 mod6
B "gz-i-l n=2 mod6
B ”%34—1 n=3 mod 6
”g4+1 n=4 mod 6
\”g5+1 n=5 mod 6
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A formula

@ We are interested in finding non-negative integers a, b s.t.
2a+3b=n.

/(23( n) = #{(a,b) : 2a+ 3b = n}

g +1 n=0 mod 6
”%1 n=1 mod®6
n=2 mod®6
"%3—&—1 n=3 mod 6
”g4+1 n=4 mod 6
"_5+1 n=5 mod 6

5 11, 1. 1, 1.
6+E+( )Z+§36(1+%0+€3 6(1_%1)

where &3 := €2™/3 = L(~1+/3i)  (root of unity).
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Geometry of the coin exchange problem

@ We are interested in finding non-negative integers a, b s.t.
2a+43b=n.

@ This corresponds to integer points in the polytope
M3y = {(a,b) € Ry : 2a+3b = n}.
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Geometry of the coin exchange problem

@ We are interested in finding non-negative integers a, b s.t.
2a+43b=n.

@ This corresponds to integer points in the polytope
N3 = {(a,b) € RZ; : 2a+3b = n}.
e For n =10, (2,2) and (5,0) are solutions.

Points with integral coordinates correspond to solutions:

b

j® © o o o o
e o o o o o
e o o o o o
e o o o o o
e o o o o o

3

a
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Geometry of the coin exchange problem

@ We are interested in finding non-negative integers a, b s.t.
2a+43b=n.

@ This corresponds to integer points in the polytope
N3 = {(a,b) € RZ; : 2a+3b = n}.
e For n =10, (2,2) and (5,0) are solutions.

Points with integral coordinates correspond to solutions:

a
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Volume and the number of integer points

b

a

e normalised volume: T3 3)(n) := vol1(M23)(n)) = §-
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Volume and the number of integer points

Question

What is the relationship between
T(273)(n) and i(273)(n)?

a

e normalised volume: T3 3)(n) := vol1(M23)(n)) = §-

° ipa)(n) = ¢+ 5+ (-1)"3 +&1+ ) +E"(1 - Fi)
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Volume and the number of integer points

Question

What is the relationship between
T(273)(n) and i(273)(n)?

@ normalised volume: T3 3)(n) := voI1(I'I(2 3)(n)) = §.
° ipy(n=¢+5+(-1)";+&0+ 7 e )+52"(1—%")

Remark
o T23)(n) =~ i2,3)(n)

Matthias Lenz (Oxford) Splines, lattice points, and (arithmetic) matroids



Volume and the number of integer points

Question

What is the relationship between
T(273)(n) and i(273)(n)?

a

@ normalised volume: T(2 3)(n) = V0|1(r|(2,3 (n) = %-

° ipa)(n) = ¢+ 5+ (-1)"3 +&1+ ) +E"(1 - Fi)

Remark

o T(23)(n) = i2,3)(n)
@ i(2,3) can be obtained by app/ying the following differentia/ operator to
Taa)(n): Todd(23)($5) = 14 35+ G35+ B lg in + 8 a s

Matthias Lenz (Oxford) Splines, lattice points, and (arithmetic) matroids 6



Vector partition functions

Question

Let (u,v) € Z2. In how many different ways can we
write (u,v) as a sum of (1,0), (0,1), (1,1)?
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Vector partition functions

Question ®
Let (u,v) € Z2. In how many different ways can we

write (u,v) as a sum of (1,0), (0,1), (1,1)?

Remark

We are interested in the integer points in the polytope
Mx(u,v) ={(a,b,c) eR3y:a-(1,0)+ b-(0,1) +c-(1,1) = (u,v)}.

b

G0.2)

C
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Vector partition functions

Remark
o We are interested in the integer points in the polytope
Mx(u,v) ={(a,b,c) eRyy:a-(1,0)4+b-(0,1)+c-(1,1) = (u,v)}.
e ix : 72 — Ny assigns to (u, v) the number of integer points in the
polytope Mx(u, v)
o Tx :R2 — Rxg assigns to (u, v) the normalised volume of the

polytope Mx/(u, v)
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Vector partition functions

min(u+1,v+1) w,v>0

0 otherwise

° ix(u,v)= {

min(u,v) u,v>0

o Tx(u,v)= {

0 otherwise 0
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Vector partition functions

o ix(u,v) min(u+1,v+1) w,v>0
Ix\u,v) =
A 0 otherwise
in(u, ,v=0
o Tx(u,v) = min(u,v) u,v .
0 otherwise 0

° Todd(X)(%, %) =1+ % + % transforms

Tx into ix. y
° Todd(X)(%, %)TX is not always

well-defined.
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Vector partition functions

min(u+1,v+1) w,v>0
0 otherwise

° ix(u,v)= {

min(u,v) u,v>0

o Tx(u,v)= {

° Todd(X)(%, %) =1+ % + % transforms
Tx into ix.

° Todd(X)(%, %)TX is not always
well-defined.

o ix(u—1,v—1)= Tx(u,v)
(everywhere on Z2)

0 otherwise 0
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© Definitions and results
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Setup

o X =(xi,...,xn) CZ9 list of vectors / (d x N)-matrix

o d <N, full rank

e 0 ¢ conv(xy,...,xn).

Example
o X =(2,3)

101
°X_<o 1 1)
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Setup

o X = (x1,...,xn) C Z9, list of vectors / (d x N)-matrix
o d <N, full rank
e 0 ¢ conv(xy,...,xn).

@ Sometimes we assume: X unimodular, i.e. every non-singular (d x d)
submatrix has determinant +1 < every RY basis selected from X is a
lattice basis for Z9.

v

Example
o X =(2,3)

101
°X_(o 1 1)

Matthias Lenz (Oxford) Splines, lattice points, and (arithmetic) matroids 11




Variable polytopes

Definition (Variable polytopes)
Let u € ]Rd. (5.2.0)

Mx(u) == {GGRgO : Xa = u} %
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Variable polytopes

Definition (Variable polytopes)
Let u € RY.

MNx(u) :={a e Rgo : Xa = u}

Definition
We define the multivariate spline Tx : RY — R and
the vector partition function ix : Z9 — Ny by

= ;VO u
TX(U) T \/m |N—d(|_IX( ))

and ix(u) := ‘ﬂx(u)ﬂZd‘.
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Variable polytopes

Definition (Variable polytopes)
Let u € RY.

MNx(u) :={a e Rgo : Xa = u}

Definition
We define the multivariate spline Tx : RY — R and
the vector partition function ix : Z9 — Ny by

= ;VO u
TX(U) T \/m |N—d(|_IX( ))

and ix(u) := ‘ﬂx(u)ﬂZd‘.

Remark
® ix generalizes the Ehrhart polynomial. J
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Properties

Remark
O supp(Tx) = {Z,N:l Aixi T Aj > 0} =: cone(X)
@ Tx is piecewise polynomial of degree N — d. 0

© Regions of polynomiality are cones

Matthias Lenz (Oxford) Splines, lattice points, and (arithmetic) matroids 13



Properties

Remark
O supp(Tx) = {Z,N:l Aixi T Aj > 0} =: cone(X)
Tx is piecewise polynomial of degree N — d.

Regions of polynomiality are cones

© 00

ix Is piecewise quasipolynomial
(quasipolynomial: agrees with a polynomial on
each coset of some sublattice T C 79)

ix Is piecewise polynomial if X is unimodular
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Properties

Remark
O supp(Tx) = {Z,N:l Aixi T Aj > 0} =: cone(X)
@ Tx is piecewise polynomial of degree N — d. 0

© Regions of polynomiality are cones

@ ix is piecewise quasipolynomial
(quasipolynomial: agrees with a polynomial on
each coset of some sublattice T C 79)

© ix is piecewise polynomial if X is unimodular

Notation
o x=(vi,...,vy) ERY ~ pyi=vis1 + ...+ vysq € R[sy, ..., sq]

o For example, x = (1,2) ~» py = s1 + 25.
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Khovanskii-Pukhlikov formula

Definition

Todd operator: Todd(X) := [[,cx 7725 € R[[s1,- ., s4]]

Remark

x B
o =2 = Yo ()

@ B; denote the Bernoulli numbers By =1, By = % B, = %

yo oo .
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Khovanskii-Pukhlikov formula

Definition

Todd operator: Todd(X) := [[,cx 7725 € R[[s1,- ., s4]]

Remark

x B
o =2 = Yo ()

yo oo .

@ B; denote the Bernoulli numbers By =1, By = % B, = %
Notation
e peR[[s1,...,sq]] ~ p(D) := p(%7'._’%)
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Khovanskii-Pukhlikov formula

Definition
Todd operator: Todd(X) := [[,cx 7725 € R[[s1,- ., s4]]

Remark

x B
o =2 = Yo ()

@ B; denote the Bernoulli numbers By =1, By = % B, = %“
Notation
e peR[[s1,...,sq]] ~ p(D) := p(%7'._’%)

Theorem (Khovanskii-Pukhlikov, 1992)

@ Suppose X unimodular.
o Let u e Z9 and let pq be the local piece of Tx in neighbourhood of u.
Then ix(u) = Todd(X)(D) pa(u).
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Zonotopes

Remark
@ Tx has degree N — d, so Todd(X) is “too long”.
o A differential operator of degree at most N — d should be sufficient.
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Zonotopes

Remark
@ Tx has degree N — d, so Todd(X) is “too long”.

o A differential operator of degree at most N — d should be sufficient.

v

Definition
e zonotope: Z(X) := {3 M Aixi:0< X <1} =X-[0,1]V
e Z_(X) := set of interior lattice points in zonotope Z(X)

- (000)
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P-spaces

o x=(vi,...

,Vd)GRdeX = V151+...—|—Vd5d€R[51,...
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P-spaces

o x:(vl,...,vd)eRdpr = V151+...—|—Vd5d€R[51,...

@ For a sublist Y C X, we define py := erypx.

e For example, if Y =((1,0),(1

Matthias Lenz (Oxford)

;2)), then py = s1(s1 + 2).

Splines, lattice points, and (arithmetic) matroids

7Sd]

16



P-spaces

o x=(vi,...,vg) ERY ~s pyi=vis) + ...+ vysg € R[s, ..., 5q]
o For a sublist Y C X, we define py =[], .y px-
e For example, if Y =((1,0),(1,2)), then py = si(s1 + 2sp).

Definition (Akopyan-Saakyan, 1988, Dyn-Ron, 1990)
central P-space: P(X) :=span{py : Y C X, rank(X \ Y) = rank(X)}

Example
o X =(1,1,1)
o P(X) = span{l,s,s?}
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P-spaces

o x=(vi,...,vg) ERY ~s pyi=vis) + ...+ vysg € R[s, ..., 5q]
o For a sublist Y C X, we define py =[], .y px-
e For example, if Y =((1,0),(1,2)), then py = si(s1 + 2sp).

Definition (Akopyan-Saakyan, 1988, Dyn-Ron, 1990)
central P-space: P(X) :=span{py : Y C X, rank(X \ Y) = rank(X)}

Example
o X =(1,1,1)
o P(X) = span{l,s,s?}

Remark
e There is a projection 1) : R[[s1, ..., sq]] = P(X) s.t.
Todd(X)(D) Tx = ¥x(Todd(X))(D) Tx
@ In the example: forget all monomials of degree at least 3.
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Internal P-space

Remark
Todd(X)(D) Tx is not everywere well defined.
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Internal P-space

Remark
Todd(X)(D) Tx is not everywere well defined.

Definition (Holtz-Ron, 2011, (Ardila-Postnikov, 2010))

internal P-space P_( ﬂ P(X\ x)

xeX

Example
o X =(1,1,1)
e P(X) = span{l,s,s?} and P_(X) = span{1,s}

Theorem (ML)
Let p € P(X). Then p € P_(X) < p(D)Tx is continuous.

Matthias Lenz (Oxford) Splines, lattice points, and (arithmetic) matroids

17




Variant of Khovanskii-Pukhlikov

Definition
Let z € R?. Then define

f; .= Yx(e P* Todd(X))
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Variant of Khovanskii-Pukhlikov

Definition
Let z € R?. Then define

f; .= Yx(e P* Todd(X))

Theorem (ML)

Suppose X unimodular. Let z € Z_(X). Then f, € P_(X).

Theorem (ML, Variant of Khovanskii-Pukhlikov)

Suppose X unimodular.

Let uc Z9 and z € Z_(X). Then

(D) Tx(u) = ix(u — z).

Matthias Lenz (Oxford)
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Variant of Khovanskii-Pukhlikov

Definition
Let z € R?. Then define

f; .= Yx(e P* Todd(X))

Theorem (ML)
Suppose X unimodular. Let z € Z_(X). Then f, € P_(X).

Theorem (ML, Variant of Khovanskii-Pukhlikov)
Suppose X unimodular. Let u € Z9 and z € Z_(X). Then

(D) Tx(u) = ix(u — z).

Theorem (ML)
Suppose X unimodular. Then {f, : z € Z_(X)} is a basis for P_(X).
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Matroids and Hilbert series

o Hilbert series:V = @ V; graded vector space
~~ Hilb(V, q) = ", dim Viq'.

o Representation of a Matroid: a tuple (X, A) with X a list of vectors

and A C 2X linearly independent sublists

o Tutte polynomial:
‘Ix(oz,ﬁ) = ZAQX(O‘ _ 1)r—rank(A)(I3 _ 1)|A|—rank(A)
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Matroids and Hilbert series

o Hilbert series:V = @ V; graded vector space
~~ Hilb(V, q) = ", dim Viq'.

o Representation of a Matroid: a tuple (X, A) with X a list of vectors

and A C 2X linearly independent sublists

o Tutte polynomial:
‘Ix(oz,ﬁ) = ZAQX(O‘ _ 1)r—rank(A)(I3 _ 1)|A|—rank(A)

Theorem (Ardila-Postnikov (2009), Holtz-Ron (2011))
o Hilb(P-(X),q) = ¢"~9%x(0,¢7")
o Hilb(P(X),q) = ¢V 9Tx(1,97")

o If X is unimodular then dim P(X) = vol(Z(X)) and
dim P_(X) = no. of interior lattice points of Z(X)
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What can we do if X is not unimodular?

Matthias Lenz (Oxford)
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Toric arrangements

Definition
x € R? defines the following:

o in RY the hyperplane Hy = {v € R : v . x = 0}

e in (R/Z)9 the hypersurface H: = {¢ € (R/Z)? : ¢ - x = 0}
{HL : x € X} is the toric arrangement defined by X.

Example

%= () G () A
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Toric arrangements

Definition
x € R? defines the following:

o in RY the hyperplane Hy = {v € R : v . x = 0}

e in (R/Z)9 the hypersurface H: = {¢ € (R/Z)? : ¢ - x = 0}
{HL : x € X} is the toric arrangement defined by X.

Example

- x= () ) (5) .

@ V(X) = vertices of the toric arrangement
e ¢ € V(X) defines a map ey : RY — ST C C by es(x) = e2mi(¢-x)

@ ey is a higher dimensional analogue of a root of unity.
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Periodic Todd operator and the Brion-Vergne formula

Definition (Periodic Todd operator)

Todd(X) := > e¢H T

peV(X) xeX o(—

e —Px

Theorem (Brion-Vergne, 1997)

Let u € Z9 and let po be the local piece of Tx in a neighbourhood of u.
Then

ix(u) = Todd(X)pa(u).
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Periodic Todd operator and the Brion-Vergne formula

Definition (Periodic Todd operator)

Todd(X) := > e¢H T

peV(X) xeX o(—

e —Px

Theorem (Brion-Vergne, 1997)

Let u € Z9 and let po be the local piece of Tx in a neighbourhood of u.
Then

ix(u) = Todd(X)pa(u).
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Periodic P-spaces

Definition (ML)

Periodic central P-space:

P(X):= P espxix,P(Xs). where X, =(x € X :¢-x=0)
PEV(X)
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Periodic P-spaces
Definition (ML)

Periodic central P-space:

P(X):= P espxix,P(Xs). where X, =(x € X :¢-x=0)
PEV(X)

Remark
o There is a projection 1) : Doev(x) eRl[s1; - - -, sal] = P(X) s.t.

Todd(X)(D) Tx = $x(Todd(X))(D) Tx

Matthias Lenz (Oxford)
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Periodic P-spaces

Definition (ML)

Periodic central P-space:

P(X):= P espxix,P(Xs). where X, =(x € X :¢-x=0)

peV(X)

Remark

o There is a projection 1) : Doev(x) eRl[s1; - - -, sal] = P(X) s.t.

Todd(X)(D) Tx = $x(Todd(X))(D) Tx

Definition (ML)
o f, := (e P Todd(X))

o internal periodic P-space: P_(X) :=span{f, : z € Z_(X)}

Matthias Lenz (Oxford)
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Theorem (ML)
Let p € P(X). Then p € P_(X) < p(D)Tx is continuous.

Matthias Lenz (Oxford) Splines, lattice points, and (arithmetic) matroids

24



Theorem (ML)
Let p € P(X). Then p € P_(X) < p(D)Tx is continuous.

Theorem (ML, variant of Brion-Vergne)
Let uc Z9 and z € Z_(X). Then

(D) Tx(u) = ix(u — z).

Question

o Khovanskii-Puklikov's and Brion-Vergne's motivation was geometry

(e. g. Riemann-Roch theorem for toric varieties).

@ Do these results have an interpretation in terms of (algebraic)
geometry?
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Arithmetic matroids and Hilbert series

@ Representation of an arithmetic matroid: X C Z¢ list of vectors and
m(A) = ’spanR(A) N Zd/spanZ(A)| multiplicity function

@ Arithmetic Tutte polynomial:
Mx (e, B) := 3 acx M(A) (e — 1)~ A (g — 1)lAl=rank(A)

o If X is unimodular, then Mx(a, B) = Tx(a, B).
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Arithmetic matroids and Hilbert series

@ Representation of an arithmetic matroid: X C Z¢ list of vectors and
m(A) = ’spanR(A) N Zd/spanZ(A)| multiplicity function

@ Arithmetic Tutte polynomial:
Mx (e, B) := 3 acx M(A) (e — 1)~ A (g — 1)lAl=rank(A)

o If X is unimodular, then Mx(a, B) = Tx(a, B).

Theorem (ML)
o Hilb(P_(X),q) = ¢"~Mx(0,q7")
o Hilb(P(X), q) = g"~9Mx(1,q7")
o dim P(X) = vol(Z(X)) and dimP_(X) = no. of interior lattice
points of Z(X)
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End of talk
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Appendix

Definition (Cocircuit ideal and projection)
o J(X):=ideal{pc: C C X and rank(X \ C) < d} C R[sy,...
e It is known that P(X) & J(X) = R[s1,. .., sq4].
o Let ¢x : P(X) ® J(X) — P(X) denote the projection.

75d]-

Projections
e Unimodular case: ¢¥x : R[[s1, ..., sq4]] = P(X) projection map
o General case: QZX : @¢ev(x) esR([[s1, ..., 54]] = 75(X)
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Appendix

Definition (Cocircuit ideal and projection)
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o Let ¢x : P(X) ® J(X) — P(X) denote the projection.

75d]-

Projections
e Unimodular case: ¢¥x : R[[s1, ..., sq4]] = P(X) projection map
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Definition (Cocircuit ideal and projection)
o J(X):=ideal{pc: C C X and rank(X \ C) < d} C R[sy,...
e It is known that P(X) & J(X) = R[s1,. .., sq4].
o Let ¢x : P(X) ® J(X) — P(X) denote the projection.

7Sd]-

Projections
e Unimodular case: ¢¥x : R[[s1, ..., sq4]] = P(X) projection map
o General case: QZX : @¢ev(x) esR([[s1, ..., 54]] = 75(X)

(fp € R[s1,...,54]] for all ¢ € VeX))

o Ux(f) =Y, estx(fy)
o %, 1= Yx(e P Todd(X))
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